🔮 Matura Z Matematyki Poziom Podstawowy Maj 2010

matura 2010 maj. Informatyka, matura 2010, poziom podstawowy. Informatyka, matura 2010, poziom rozszerzony. kierunki po maturze z matematyki i angielskiego Matura poprawkowa matematyka – sierpień 2017 – poziom podstawowy – odpowiedzi. Matura podstawowa matematyka 2010 Matura podstawowa matematyka 2009 Książka Matura. Matematyka. Poziom podstawowy autorstwa Grażyna Zielińska, dostępna w Sklepie EMPIK.COM w cenie 23,54 zł. Matura z matematyki 2023-2024 Matura 2010 maj. 6. Zadania maturalne CKE 2023. 7. Zadania maturalne CKE - poziom rozszerzony. 8. W tym filmiku opowiadam o najlepszej metodzie nauki matematyki PREVIEW PDF. Poziom rozszerzony − przykładowe zadania Liczby rzeczywiste i wyrażenia algebraiczne. Zadanie 1. (Matura maj 2011 — 4 p.) Uzasadnij, że dla każdej liczby całkowitej k liczba k 6 − 2k 4 + k 2 jest podzielna przez 36. Zadanie 2. (Matura maj 2011 — 4 p.) Uzasadnij, że jeżeli a 6= b, a 6= c, b 6= c, a + b = 2c, to. Z MATEMATYKI POZIOM PODSTAWOWY 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1–32). Ewentualny brak zg³oœ przewodnicz¹cemu zespo³u nadzoruj¹cego egzamin. 2. Rozwi¹zania zadañ i odpowiedzi wpisuj w miejscu na to przeznaczonym. 3. Odpowiedzi do zadañ zamkniêtych (1–23) przenieœ na kartê Zestaw maturalny z matematyki - oficjalna matura, poziom podstawowy, maj 2002 roku Schemat punktacji zestawu maturalnego z matematyki - oficjalna matura, poziom podstawowy, maj 2002 roku Poziom rozszerzony Matura z matematyki (poziom podstawowy) - Czerwiec 2021. Arkusz maturalny zawiera 28 zadań zamkniętych oraz 7 zadań otwartych. Łącznie do zdobycia jest 45 punktów, a sugerowany maksymalny czas rozwiązywania to 170 minut. Matura matematyka – czerwiec 2011 – poziom podstawowy – odpowiedzi. Arkusz maturalny w formie online: Matura matematyka – czerwiec 2011 – poziom podstawowy YWMUy. Egzamin maturalny z matematyki, poziom podstawowy - maj 2010 Równania i nierówności Równania i nierówności wielomianowe Rozwiąż równanie $\begin{gather*}x^3-7x^2-4x+28=0\end{gather*}$ Podpowiedź: Rozłóż wielomian na czynniki. Z pierwszych dwóch wyrazów wyłącz przed nawias $x^2$, a z pozostałych wyłącz przed nawias $-4$.Potem jeszcze raz powstanie możliwość wyłączenia wspólnego czynnika przed Ci też potrzebny wzór skróconego mnożenia: $a^2-b^2=(a-b)(a+b)$. Rozwiązanie: $\begin{gather*}x^3-7x^2-4x+28=0\\x^2\left(x-7\right)-4\left(x-7\right)=0\\\left(x-7\right)\left(x^2-4\right)=0\\\left(x-7\right)\left(x-2\right)\left(x+2\right)=0\\x=7\quad\vee \quad x=2\quad \vee\quad x=-2\end{gather*}$ Odpowiedź: $\begin{gather*}x=7\quad\vee \quad x=2\quad \vee\quad x=-2\end{gather*}$ Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Wskaż rysunek, na którym jest przedstawiony zbiór rozwiązań nierówności \(|x + 7| > 5\). CSpodnie po obniżce ceny o \(30\%\) kosztują \(126\) zł. Ile kosztowały spodnie przed obniżką? A.\(163{,}80\) zł B.\(180\) zł C.\(294\) zł D.\(420\) zł BLiczba \(\left (\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}} \right )^0\) jest równa A.\( 1 \) B.\( 4 \) C.\( 9 \) D.\( 36 \) ALiczba \( \log_{4}8+\log_{4}2 \) jest równa A.\(1 \) B.\(2 \) C.\(\log_{4}6 \) D.\(\log_{4}10 \) BDane są wielomiany \(W(x)=-2x^3+5x^2-3\) oraz \(P(x)=2x^3+12x\). Wielomian \(W(x) + P(x)\) jest równy A.\( 5x^2+12x-3 \) B.\( 4x^3+5x^2+12x-3 \) C.\( 4x^6+5x^2+12x-3 \) D.\( 4x^3+12x^2-3 \) ARozwiązaniem równania \(\frac{3x-1}{7x+1}=\frac{2}{5}\) jest A.\( 1 \) B.\( \frac{7}{3} \) C.\( \frac{4}{7} \) D.\( 7 \) DDo zbioru rozwiązań nierówności \((x-2)(x+3)\lt 0\) należy liczba A.\( 9 \) B.\( 7 \) C.\( 4 \) D.\( 1 \) DWykresem funkcji kwadratowej \(f(x)=-3x^2+3\) jest parabola o wierzchołku w punkcie A.\( (3,0) \) B.\( (0,3) \) C.\( (-3,0) \) D.\( (0,-3) \) BProsta o równaniu \(y=-2x+(3m+3)\) przecina w układzie współrzędnych oś \(Oy\) w punkcie \((0,2)\). Wtedy A.\( m=-\frac{2}{3} \) B.\( m=-\frac{1}{3} \) C.\( m=\frac{1}{3} \) D.\( m=\frac{5}{3} \) BNa rysunku przedstawiony jest wykres funkcji \(y=f(x)\). Które równanie ma dokładnie trzy rozwiązania? A.\( f(x)=0 \) B.\( f(x)=1 \) C.\( f(x)=2 \) D.\( f(x)=3 \) CW ciągu arytmetycznym \((a_n)\) dane są: \(a_3=13\) i \(a_5=39\). Wtedy wyraz \(a_1\) jest równy A.\( 13 \) B.\( 0 \) C.\( -13 \) D.\( -26 \) CW ciągu geometrycznym \((a_n)\) dane są: \(a_1 = 3\) i \(a_4 = 24\). Iloraz tego ciągu jest równy A.\( 8 \) B.\( 2 \) C.\( \frac{1}{8} \) D.\( -\frac{1}{2} \) BLiczba przekątnych siedmiokąta foremnego jest równa A.\( 7 \) B.\( 14 \) C.\( 21 \) D.\( 28 \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{3}{4}\). Wartość wyrażenia \(2-\cos ^2\alpha \) jest równa A.\( \frac{25}{16} \) B.\( \frac{3}{2} \) C.\( \frac{17}{16} \) D.\( \frac{31}{16} \) AOkrąg opisany na kwadracie ma promień \(4\). Długość boku tego kwadratu jest równa A.\( 4\sqrt{2} \) B.\( 2\sqrt{2} \) C.\( 8 \) D.\( 4 \) APodstawa trójkąta równoramiennego ma długość \(6\), a ramię ma długość \(5\). Wysokość opuszczona na podstawę ma długość A.\( 3 \) B.\( 4 \) C.\( \sqrt{34} \) D.\( \sqrt{61} \) BOdcinki \(AB\) i \(DE\) są równoległe. Długości odcinków \(CD, DE\) i \(AB\) są odpowiednio równe \(1\), \(3\) i \(9\). Długość odcinka \(AD\) jest równa A.\( 2 \) B.\( 3 \) C.\( 5 \) D.\( 6 \) APunkty \(A, B, C\) leżące na okręgu o środku \(S\) są wierzchołkami trójkąta równobocznego. Miara zaznaczonego na rysunku kąta środkowego \(ASB\) jest równa A.\( 120^\circ \) B.\( 90^\circ \) C.\( 60^\circ \) D.\( 30^\circ \) ALatawiec ma wymiary podane na rysunku. Powierzchnia zacieniowanego trójkąta jest równa A.\( 3200 \) cm2 B.\( 6400 \) cm2 C.\( 1600 \) cm2 D.\( 800 \) cm2 CWspółczynnik kierunkowy prostej równoległej do prostej o równaniu \(y = -3x + 5\) jest równy A.\( -\frac{1}{3} \) B.\( -3 \) C.\( \frac{1}{3} \) D.\( 3 \) BWskaż równanie okręgu o promieniu \(6\). A.\( x^2+y^2=3 \) B.\( x^2+y^2=6 \) C.\( x^2+y^2=12 \) D.\( x^2+y^2=36 \) DPunkty \(A=(-5,2)\) i \(B=(3,-2)\) są wierzchołkami trójkąta równobocznego \(ABC\). Obwód tego trójkąta jest równy A.\( 30 \) B.\( 4\sqrt{5} \) C.\( 12\sqrt{5} \) D.\( 36 \) CPole powierzchni całkowitej prostopadłościanu o wymiarach \(5\times 3\times 4\) jest równe A.\( 94 \) B.\( 60 \) C.\( 47 \) D.\( 20 \) AOstrosłup ma \(18\) wierzchołków. Liczba wszystkich krawędzi tego ostrosłupa jest równa A.\( 11 \) B.\( 18 \) C.\( 27 \) D.\( 34 \) DŚrednia arytmetyczna dziesięciu liczb \(x, 3, 1, 4, 1, 5, 1, 4, 1, 5\) jest równa \(3\). Wtedy A.\( x=2 \) B.\( x=3 \) C.\( x=4 \) D.\( x=5 \) DRozwiąż nierówność \(x^2 - x - 2 \le 0\).\(x\in \langle -1; 2\rangle \)Rozwiąż równanie \(x^3 - 7x^2 - 4x + 28 = 0\).\(x=-2\) lub \(x=2\) lub \(x=7\)Trójkąty prostokątne równoramienne \(ABC\) i \(CDE\) są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że \(AD = BE\). Kąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{5}{12}\). Oblicz \(\cos \alpha \).\(\cos \alpha =\frac{12}{13}\)Wykaż, że jeśli \(a>0\), to \(\frac{a^2+1}{a+1}\ge \frac{a+1}{2}\).W trapezie prostokątnym krótsza przekątna dzieli go na trójkąt prostokątny i trójkąt równoboczny. Dłuższa podstawa trapezu jest równa \(6\). Oblicz obwód tego trapezu.\(Obw = 15+3\sqrt{3}\)Podstawą ostrosłupa \(ABCD\) jest trójkąt \(ABC\). Krawędź \(AD\) jest wysokością ostrosłupa (zobacz rysunek). Oblicz objętość ostrosłupa \(ABCD\), jeśli wiadomo, że \(AD = 12\), \(BC = 6\), \(BD = CD = 13\).\(V=48\)Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że w pierwszym rzucie otrzymamy parzystą liczbę oczek i iloczyn liczb oczek w obu rzutach będzie podzielny przez \(12\). Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.\(P(A)=\frac{1}{6}\)W dwóch hotelach wybudowano prostokątne baseny. Basen w pierwszym hotelu ma powierzchnię \(240\) m2. Basen w drugim hotelu ma powierzchnię \(350\) m2 oraz jest o \(5\) m dłuższy i \(2\) m szerszy niż w pierwszym hotelu. Oblicz, jakie wymiary mogą mieć baseny w obu hotelach. Podaj wszystkie możliwe odpowiedzi.\(8\times 30\) i \(10\times 35\) lub \(12\times 20\) i \(14\times 25\) Wskaż rysunek, na którym jet przedstawiony zbiór rozwiązań nierówności $|x+7|>5.$ Spodnie po obniżce ceny o 30% kosztują 126 zł. Ile kosztowały spodnie przed obniżką?A. 163,80 złB. 180 złC. 294 złD. 420 zł Liczba $\begin{gather*}\left(\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}}\right)^0\end{gather*}$ jest równaA. 1B. 4C. 9D. 36 Liczba $\begin{gather*}\log_48+\log_42 \end{gather*}$ jest równaA. $1$B. $2$C. $\log_46$D.$\log_410$ Dane są wielomiany $\begin{gather*}W(x)=-2x^3+5x^2-3\end{gather*}$ oraz $\begin{gather*}P(x)=2x^3+12x.\end{gather*}$ Wielomian $\begin{gather*}W(x)+P(x)\end{gather*}$ jest równy A. $\begin{gather*}5x^2+12x-3\end{gather*}$B. $\begin{gather*}4x^3+5x^2+12x-3\end{gather*}$C. $\begin{gather*}4x^6+5x^2+12x-3\end{gather*}$D. $\begin{gather*}4x^3+12x^2-3\end{gather*}$ Rozwiązaniem równania $\begin{gather*}\frac{3x-1}{7x+1}=\frac{2}{5} \end{gather*}$ jestA. $1$B. $\frac{7}{3}$C. $\frac{4}{7}$D. $7$ Do zbioru rozwiązań nierówności $\begin{gather*}\left(x-2\right)\left(x+3\right)<0\end{gather*}$ należy liczbaA. 9B. 7C. 4D. 1

matura z matematyki poziom podstawowy maj 2010